

Panel: EVA Human Modeling

- Panel Topic Description
- Panelist Presentations
- Q & A / Discussion
- Wrap-Up

Andrew Abercromby	Lead – EVA Physiology Lab
Richard Rhodes	Space Suit Engineer, Advanced Space Suit Team
Bob Sanders	Medical Director, Neutral Buoyancy Laboratory
Han Kim	Human Factors Design Engineer, Anthropometry & Biomechanics Facility
Leia Stirling	Professor & Co-Director, MIT Man-Vehicle Lab

Panel: EVA Human Modeling

- Topic Title: Near-term applications and needs of Human-Suit modeling capabilities to inform xEMU development.
- Focus on near-term applications of existing models rather than what we could do with better models 5-10 years from now.
- Are our current models good enough to be helpful? Or do their limitations make them misleading?
- What EVA-Human models do you already use, if any? What works and what doesn't work?
- If models are not already being used, why not?
- What are potential applications of model(s) to xEMU development if they are not already being used? What questions / problems can they address, how soon, and are these actually important problems?

Suit Engineering & Modeling

RICHARD RHODES – SPACESUIT ENGINEER

ADVANCED SPACESUIT DEVELOPMENT TEAM

Background

NASA

- Engineering Goal: Enable crew to perform EVA required tasks with the least amount of energy expenditure
 - ▶ If no specific tasks are identified, maximize mobility with a goal of achieving unsuited performance
- ▶ Mobility is a combination of:
 - ▶ Range of motion
 - Work or joint torque throughout that range of motion
 - Natural movement (programming)
- ▶ Mobility is also heavily impacted by fit
 - ▶ Fit is usually evaluated by how well the suit's mobility joints line up with the crew's joints throughout the required tasks

Testing Limitations

- Development budgets usually do not allow multiple sizes of suits
 - Consistent subject fit and performance can be a challenge when evaluating suit architectures
 - ▶ Iterations of joint design are expensive and slow
 - ▶Poor concept or just poor implementation
- Modeling suit fit and mobility offers a way of evaluating <u>fit</u>, <u>range of</u> <u>motion</u>, and <u>natural movement</u> of mobility architectures without building a fleet of suits
 - ▶ Models need to be validated, but can help guide development
- Examples of modeling efforts
 - ► Fit for Z-2 development

Past Sizing Method

NASA

- Historical Sizing method (Mark III & EMU)
 - ► Identify population to fit
 - Identify locations on the suit that correspond to the critical anthropometric dimensions
 - Validate measurements by building a mockup structure and fit checking crew population
 - ▶ Results:
 - ▶ 2D measurements offer little guidance on sizing of population
 - ▶ Fit checking crew population ensures current astronauts will fit, but is not very predictive of future sizes

Recent Modeling Based Sizing

- ► Z-2 Sizing Method
 - ▶ Identify population to fit
 - Obtain boundary manikins/scans to represent population
 - Conduct fit checks of manikins from entire population set in various positions
 - ➤ 3D print HUT structure and validate model results with subject fit checks
 - ► Results:
 - ▶ Offers better evaluation of 3D body shapes
 - ► Once validated, can easily fit check entire population size ranges
 - ▶ By evaluating multiple arm positions, we can evaluate good joint placement and sizes

Future Needs

- ▶ Fit Custom or Fleet Sizing
 - Modeling analysis to produce a predicted optimal fit for custom sizing
 - Modeling analysis to produce the best sizing across a fleet of suits and the number of suits
 - ▶ Combined with mobility analysis to predict mobility when not in optimal fit
- Mobility
 - ► Analysis of current mobility architecture to understand what aspects of the mobility architecture or joints could be improved to offer most natural movement or most efficient interaction with crew
 - ▶ Joint angle and position
 - Joint sizing and subject indexing
 - ▶ Bearing torque

The EMU vs. The Astronaut

Exposure Incidence System (EIS) Then and Now

Tracking the Human-Suit Interface

Robert W. Sanders, MD, FACEP, FUHM

NBL Medical Director (NASA-JSC)

Assistant Professor

University of Texas Medical Branch, Galveston

The Problem

- Over the years we have identified several significant injuries
 - Shoulder injuries (Slap, rotator cuff)
 - Knee injuries (meniscal tears)
 - Fingernail Delamination
 - What else?

Document to Prevent

• EIS

Sometimes We Fail

EIS

- We have learned a lot
 - Shoulder injury prevention
 - ASCR Conditioning
 - Inverted Ops
 - Minimize repeated failed attempts
 - But learned from injury
 - Attributed to the suit

- Desire to learn more about the "pre-exposure" subject (vs. suit)
 - Prone to injury?
 - Sleep?
 - Hydration?
 - Activity level and type
 - Are they ready/fit?
 - Preexisting injury?

Edit Pre-Suited Exposure

Details

Details

Details

Details.

Details

Not Answered

Type

Dycling.

Functional Fitness

Running/Jogging

Seimming

Not Amounted

NBL EVA Training

1G - NBLWmt

1G - NBLWet.

1G - NBLWet

1G - NBLWet

1G - NBLWet

NBL

NBL

NBL.

NBL

NBL.

EMU -

Planar

EMU -

Planar

EMU -

Planar

EMU -

Planar

Z-2

EMU

EMU

EMU

EMU

EMU

LTA

LTA

LTA

LTA

LTA

0

0

D

Add Condition

Add Condition

Add Condition:

Add Condition

est NBL Exposu	res Resulting in a C	andition Report			
OUTTOE Expose	out thousand and o	onalion raport			
	Subject	Date	Event Description	Condition	
cosure Condition		1G - NBLWet	Bilateral thumb pain 2/2 glove fit issues and "break points"		
				got to point where CM preferred to truncate run, and requested pain meda	
sposure Condition			1G - NBLWet	Subconjunctival Hernatome noted after run	
posure Condition			1G - NDCWet	possibly due to inverted time	

Still just learning from mistakes...

- Modeling can *prevent* the need to learn from "misteaks"
 - Proactive
 - Prevent or Decrease injuries
 - New Suit Design Injury *prevention*
 - No Need to expose personnel to suit to learn

Modeling is a Solid Answer

- What we know is from EMU in NBL
 - vetted in microgravity.
- No new injury patterns "discovered" in space,
 - our process is "working"

- Imagine the benefit to modeling the suit-human interface...
 - to guide suit use and astronaut training in preventive measures without ever having to injure a crew member
 - For planetary missions, there is no equivalent analog... modeling is our only option

Thank You!

• There is no perfect suit... There is no perfect human, but with the proper modeling, we may create the ideal human-suit interface ... with virtually all injuries made a thing of the past!

Predictive Suit Fit Check: Former Techniques

- Linear Measurement Based Technique
 - Compare linear dimensions between suit and crewmembers
 - However, linear measurements do not represent 3-D body and suit geometry

- 3-D Scan Technique
 - Overlay 3-D body scans with CAD drawing to assess overlap and clearance
 - However, scans do not represent the entire ranges of crewmember body shapes

Boundary Subject Sampling

- Body dimensions were strategically sampled to include 99% of population ("boundary subjects")
- Formerly used a nearest-neighbor scan data, but at present using a parametric body shape model

Identification of Boundary Subjects

Parametric Body Shape Modeling

Boundary Manikin Family

Fit Check Techniques for Large Dataset

Manual fit assessments become extremely difficult with a large number of suits and body poses

- Programmatic techniques were developed to automatize suit positioning and clearance quantification
- A reposable manikin was developed to articulate upper extremity poses

Monte-Carlo Suit Fit Assessment

- A large dataset of body shapes will be generated by a parametric model
- Programmatic suit positioning and volumetric assessment applied to models
- All permutations of suit sizes and body poses will be tested for fit assessments

Future Work: Incorporation with Parametric Suit Modeling

- Previous suit fit check required a end-product CAD or 3-D scan of suit
- In the near future, suit geometry will be parametrically modeled from suit scans
- Suit fit can be predictively assessed for variations of suit configuration and body shape parameters

Han Kim han.kim@nasa.gov
Sudhakar Rajulu sudhakar.rajulu-1@nasa.gov

Work performed in collaboration with:

Elizabeth Benson (MEI Technologies)

Karen Young (Leidos)

Yaritza Bernal (Geologics)

Linh Vu (Geologics)

Decision Support Using an Integrated Human-Exosuit Computational Model Framework

Leia Stirling, PhD

Charles Stark Draper Professor of Aeronautics and Astronautics Associate Faculty, Institute for Medical Engineering and Science Massachusetts Institute of Technology

October 18, 2017

Stirling Group Research Goals

Advancing the use of *wearable sensors* in *naturalistic settings* to enable new insights on the interactions between *human motor and cognitive performance*

- Quantifying and modeling human biomechanics during operational tasks
- Mapping complex physiological signals to performance metrics
- Assessing how exosystem design parameters influence motor and cognitive performance

Occupational Therapy Schools USA

Lockheed Martin

Current Limitations in Modeling Human-Suit Interaction

- Dynamic Interaction Locations
 - Tools exist for gait and ergonomics, as well as mechanical design
 - No software to allow for design of systems with dynamic interaction locations with the human

- Natural range is not always enabled in spacesuits
- Increasing hip circumduction during gait without the spacesuit increases required energy (Shorter, Wu, & Kuo, 2017)
- Motor limitations can influence cognitive elements of performance (Bequette & Stirling pilot data)

Cowley et al., 2012

Our EVA-Human Modeling Approach

- Integrate solid modeling, solid mechanics, and musculoskeletal modeling
- Use the relevant pipeline components to assess decisions related to
 - Kinematic fit (static and dynamic)
 - Assessment of sizes required for a population
 - Dynamics of motion for operational tasks
 - Human energy requirements for operational tasks
 - Potential injury mechanisms

Current Capabilities Examples: Insights from Solid Models

- Informing decisions on locking out joints or placement of bearings
 - Example: The waist bearing range of motion enables a reduced dynamic base during locomotion.

	Static Base (m)	Dynamic Base (m)
Unsuited (Measured)	0.263	0.081±0.021
Suited Walking Forward (Measured)	0.355	0.190±0.027
Suited Walking Forward (Model Minimum)	0.354	

Cullinane, Rhodes, & Stirling L, 2017

Estimating required torques to generate motion or motion from applied torques

Example: Validating model dynamics and assessing the contribution of torque to speed and knee

alignments

JSC Experimental Data
— MIT Computational Model (45 deg. knee)

Cullinane, Rhodes, & Stirling L, In Prep

Example Questions for xEMU Needs

- Range of motion requirements
 - How does including bearings and adapting bearing alignment affect range of motion?
 - How does the natural range of motion compare to the designed range of motion?
- Dynamics of motion for operational tasks
 - What joint torques are required for operationally relevant tasks?
- Considerations in fleet sizing
 - How does selecting a fixed number of sizes affect the fit for a range of anthropometries?
 - What is the lag between human motion and suit motion (i.e., what is the slop)?
 - How does a particular astronaut fit the suit and what indexing would be required?

Acknowledgements

- Research Team
 - Faculty: Leia Stirling (PI), Raul Radovitzky (Co-PI)
 - Students: Conor Cullinane, Chris King, Aditi Gupta, Patrick McKeen
 - Collaborators: Richard Rhodes (NASA), Shane Jacobs (David Clark Company, Inc.), Dennis Anderson (BIDMC)

• The work presented in this presentation has been supported by NASA (NNX15AR20G and NNX15AP51H).

Panel: EVA Human Modeling

- Topic Title: Near-term applications and needs of Human-Suit modeling capabilities to inform xEMU development.
- Focus on near-term applications of existing models rather than what we could do with better models 5-10 years from now.
- Are our current models good enough to be helpful? Or do their limitations make them misleading?
- What EVA-Human models do you already use, if any? What works and what doesn't work?
- If models are not already being used, why not?
- What are potential applications of model(s) to xEMU development if they are not already being used? What questions / problems can they address, how soon, and are these actually important problems?